
CS352 Lecture -The Relational Model; Relational Algebra

last revised January 3, 2019
Objectives:

1. To briefly introduce the entity-relationship model
2. To introduce fundamental concepts of the relational model, including

terminology, keys, nulls, views
3. To introduce the relational algebra

Materials:

1. Projectable of an ER diagram example
2. Projectable of figure 2.8 from book
3. Projectable/handout of library example database used in class (scheme and

instance)
4. Handout of natural language queries against this database
5. Projectable of natural language query processing
6. Projectable of query language classification
7. Projectable of RA queries and updates against example database
8. Projectable of primitive operations equivalent of division

I. Introduction

A.We have seen that a database management system typically describes a
database at three levels of description.

1. The physical level - how the data is stored in files

2. The conceptual level - the “big picture”

3. The view level - individual views of the database for each application

B. In order to be able to describe a database, we need some system of notation
and representation - a data model. This is true at all levels; but, we are

�1

particularly concerned with description at the conceptual and view levels.
We must describe two things:

1. Data objects

2. Relationships between data objects

C. We noted last time that, historically, there have been five major types of data
model - all of which are represented by DBMS's in use today, though two are
mostly in legacy systems:

1. The hierarchical model (largely obsolete, but still used in some legacy
systems -we will not look at)

2. The network model (largely obsolete, but still used in some legacy
systems -we will not look at)

3. The relational model (the dominant model, and the focus of much of the
course). We will begin talking about it today.

4. Various object-oriented and object-relational models (we will look at
briefly in this course)

5. Various semi-structured models used in situations where performance is
critical (we will look at briefly in this course)

D. There is another model, called the entity-relationship model, which is is not,
per se, a basis for commercial products; but it is a very useful tool for
DESIGNING databases. The ER model utilizes a diagrammatic notation,
known as an ER diagram. Here is an example, using one of several different
notations that are used for ER diagrams:  
 
 
 
 

�2

 
 
 
 
 
 
PROJECT 

1. An ER diagram incorporates the following elements:

a) Entity - an entity is an object that we wish to represent information about.  
 
Example in the above: Borrower, Book, Author

b) Relationship - a relationship is some connection between two or more
entities:  
 
Examples: In the above, the “Checked Out” relationship between a
borrower and a book; the “Wrote” relationship between a book and its
authors.

c) Attribute - Individual facts that we store concerning an entity or
relationship.

(1)Example: In the above, we record for a Book entity its call number
and title. (In practice, we'd record a lot more as well)

(2)Example: Relationships do not always have attributes, but
sometimes they do. CheckedOut has a DateDue attribute, while
Wrote has no attributes.

2. While all the data models represent entities in roughly the same way - as
a sequence of in a file - each representing one entity - one of the key
distinctions between the various models is how they represent
relationships.

�3

II. The RelationalModel

A. The Relational Data Model is the predominant data models used for
commercial DBMS's. Although it was first proposed in the 1970's, it has
been the subject of intensive research that continues to today, and has
become the dominant model in actual use. It will, therefore, be the major
focus of this course.

B. One of the major advantages of the relational model is that it has a solid
mathematical foundation. The relational model is based on the mathematical
theory of relations. As a result, a large body of mathematical tools is
available to support work with this model.

C. The Relational Model represents both entities and relationships the same
way, via tables.

1. This means that the relational model draws no distinction between entities
and relationships; both are simply tables as far as the relational model is
concerned, and are processed in exactly the same way.

2. However, a distinction between entities and relationships can be useful in
the process of designing a database scheme. Thus, one can use the
entity-relationship model as a design tool, with the relational model
serving as a means of implementation. The conversion from design to
implementation is straight-forward since both entities and relationships
can easily be represented by tables. (We will look at this more formally
when we talk about database design.)

3. One important requirement in the relational model is that the relational
model requires that attributes (table columns) be atomic and single-
valued.

a) The former requirement can be easily met by allocating one table
column to each component of a composite attribute.  

�4

 

Example: A person’s address is not atomic. In the US, we normally
consider it to consist of a street address, city, state, and ZIP code.
Therefore, in setting up a relation scheme for a person, we will
generally have separate attributes for each. (Sometimes even two
attributes for street address, separating it into the street address proper
and an apartment number or the like.)

b) The latter requirement may necessitate creating a separate table to
store the different values of a multivalued attribute - we will discuss
this further when we discuss multivalued dependencies in connection
with database design.  
 

Example: Many people have more than one phone number. In a
relational database, we would need to use a table to store phone
numbers, rather than having a phone number attribute that stores an
array of values.

(1)Historically, the need to do this - which led to searching multiple
tables - had performance implications which led to the earlier
models persisting.

(2)A lot of work has gone into indexing strategies to produce major
improvements in the performance of relational systems, to the point
where they now dominate the database world.

(3)While modern relational database systems generally give very
good performance, for extremely large datasets efficiency
considerations have led to the rise of some non-relational models
we will look at near the end of the course.

D.We looked at relational databases briefly in CPS221. Some of what we look
at here will be review of concepts we saw then (just in case someone might
have forgotten something - which would never happen, of course :-) but
much of what we will discuss here will be new.

�5

III.Basic Terminology

A.Because the relational model is grounded in the mathematical theory of relations,
writers often use mathematical terms when discussing the relational model.
However, since mathematical terminology can be intimidating to some, there is an
alternate, non-mathematical set of terms that can also be used.

B. Terminology drawn from mathematical relations

1. A relational database is a collection of relations.

2. Formally, a relation is a set of ordered tuples of some arity.

a. Note that the term tuple is not as unfamiliar as it sounds. For example, if a
woman gives birth to two children, we say she has had twins; but if she has
five, we say she has had quintuplets; if six, sextuplets etc.

b. The arity of a tuple is the number of components in it - e.g.  
(aardvark, anthony) is a tuple of arity 2  

c. Within any given relation, all the tuples have the same arity.

d. When we say that the tuples are ordered, we mean that the order of listing
the components is important - e.g.  
 

(aardvark, anthony) is not the same tuple as (anthony, aardvark)

e. Since a relation is a set, the order of the tuples themselves is immaterial -
e.g. the following are the same relation  
 
(aardvark, anthony)  
(elephant, emily)  
 

and  
 

(elephant, emily)  
(aardvark, anthony)

�6

3. The components of a tuple are generally called attributes. Mathematically,
each attribute of a tuple is given a number - e.g. in (aardvark, anthony),
aardvark is attribute 1 and anthony is attribute 2. (Note that, by convention,
1-origin indexing is used.) However, in relational databases, we normally
give the attributes names (perhaps last_name and first_name, in this case.)

4. Further, each attribute of a tuple is drawn from a specific domain, or set
of possible values.  
 

Example: the last_name attribute above is drawn from the set of all
possible last names.

a. In many cases, actual relational DBMS software only allows the
domain to be specified in terms of a basic data type - e.g. “integer” or
“string of 30 characters”.

b. Some systems do, however, allow the enforcement of domain
constraints beyond basic data type.  
 

In such a system, proper specification of domains could prevent
semantic errors, such as mistakenly storing a ZIP+4 ZIP code (9 digits)
into a social security number field!

5. The specification of the structure of tuples in a relation is called a relation
scheme.  
 

Example: suppose we had a relation in which the first attribute of each
tuple was drawn from the set of ASCII characters and the second from the
set of integers. (Perhaps this relation comprises an ASCII code table.)
We could describe the relation scheme for this relation as follows:  
 

ASCII_code_table_scheme = (character: char, code: integer)  
 

(Note the analogy to a type in a programming language.)  
 

A specific relation on some scheme is called a relation instance or an
instance of that scheme  
 

(Note the analogy to the value of a variable in a programming language)

�7

6. A relation instance on some scheme is, in fact, a subset of the cartesian product
of the domains of its attributes. (It can be any subset, including an improper
subset or the empty subset)  
 

Example: Suppose we had a relation on the following scheme:  
(One_digit_integer: 0..9, flag: boolean)  

 

The domain of the first attribute would be { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }  

 and that of the second would be { false, true }  
 
 

The Cartesian product of these domains is:  
 

0 false 
1 false 
2 false 
3 false 
4 false 
... 
8 true 
9 true 

 

Any relation on this scheme would be a subset of this cartesian product. E.g.
the table which indicates whether a given integer is odd would be the subset:  
 

0 false 
1 true 
2 false 
3 true 
4 false 
... 
8 false 
9 true

C. Alternate (non-mathematical) terminology

1. We may also speak of a relational database as a collection of tables. (A
table, then is another name for a relation.)

�8

2. Each table, in turn, consists of some number of rows and columns. (A row, then,
is another name for a tuple; and a column is another name for an attribute.)  
 
The relation-scheme is often represented as headings on the columns - e.g.  
 

last_name first_name  
 

aardvark anthony  
cat charlene

D.Keys

1. Because a relation is a set, the tuples comprising it must be distinct (no
two can be identical)

a. A superkey for a relation is a set of attributes which serve to
distinguish any tuple in the relation from all others - i.e. each tuple in
the relation will have a different set of values for superkey attributes
than any other tuple in the relation.  
 

A superkey may be a single attribute, or it may be composite (two or
more attributes). (if the superkey is composite, some attributes may
have the same value in different tuples as long as at least one differs so
that the exact same combination does not appear more than once.).  
 

Because a relation is a set, all of the attributes, together, will
necessarily be a superkey.

b. A candidate key is a superkey which has no proper subset that is also
a superkey.

c. A primary key is one particular candidate key chosen by the designer
to serve as the basis for identifying tuples.

2. An essential characteristic of a database design is that every relation has
a primary key (though perhaps this primary key will, in fact, be all of the
attributes together.)

�9

3. Another important notion in relational database design is the notion of a
foreign key. When a column or group of columns in one table is the
primary key of some other table, we call this a foreign key (the key of
some other table is present in this table.) Foreign keys are, of course, the
way we represent relationships in relational tables.

E. Nulls

1. One interesting question that arises in database design is how are we to handle a
situation where we don't have values available for all the attributes of an entity.  
 

Example: Suppose we need to add a person to a scheme that includes the phone
number, but for some reason we don't know the person's phone number.

2. For cases like this, relational DBMS's provide a special value called NULL that
can be stored in a field. When we print out the field, NULL will normally print
as spaces; but storing NULL in a field is NOT the same as storing a string of
spaces (i.e. the DBMS software distinguishes between NULL and " ").

F. The scheme for a relational database can be represented in diagrammatic
form by a schema diagram (Figure 2.8 from book), Note the explicit
representation for foreign keys.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
PROJECT 

�10

IV.Query Languages

A.For the rest of this series of lectures, we will make use of the following very
simple example database for a small library. (This is similar to the one we
used in CPS221, but has two more tables and allows illustrating several more
operations.)  
 

The structure of this database has been contrived to allow us to illustrate
most kinds of query operations we might want to perform. (Relations have
been kept unrealistically small, both in terms of the number of rows and in
terms of the number of columns).  
 
Schema diagram:  
 

�  
 
Example instance: (Note: primary key attributes are underlined)  
 

�11

borrower(borrower_id, last_name, first_name)  
 

12345 aardvark anthony  
20147 cat charlene  
89754 dog donna  
60984 fox frederick  
54872 zebra zelda  
 
book(call_number, title, author)  
 

QA76.093 Wenham Zoo Guide elephant  
RZ12.905 Fire Hydrants I Have Known dog  
LM925.04 21 Ways to Cook a Cat dog  
AB123.40 Karate koala  
 
checked_out(borrower_id, call_number, date_due)  
 

89754 RZ12.905 11-10-02  
89754 LM925.04 11-10-02  
20147 AB123.40 11-15-02  
 

reserve_book(call_number, course_id)  
 

QA76.093 BY123  
AB123.40 PE075  
 

employee(ssn, last_name,first_name, salary, supervisor_ssn)  
 

123-45-6789 aardvark anthony $40000 null  
567-89-1234 buffalo boris $30000 123-45-6789  
890-12-3456 elephant emily $50000 123-45-6789  
111-11-1111 fox frederick $45000 567-89-1234  
 

PROJECT, HANDOUT - SHOWING CONTENT AND SCHEME

B. One of the main reasons for having a database is to be able to answer
queries, such as the following that might be posed against our example.
(Some of these are ones used in CPS221, but others involve more advanced
features than those discussed there)  

1. Who is the borrower whose borrower id is 12345?
2. List the names of all borrowers

�12

3. What is the title of the book whose call number is QA76.093?
4. List the titles of all books that are currently checked out.
5. List the names of all borrowers having one or more books overdue.
6. List the titles of all books, together with the borrower id of the person (if

any) who has the book out.
7. List the names of employees together with their supervisor’s name.
8. List the names of all employees who earn more than their supervisor.
9. List the names of all people connected with the library - whether

borrowers, employees, or both.
10.List the names of all borrowers who are not employees.
11.List all books needed as course reserves that are currently checked out to

someone.
12.List students who have fulfilled every core requirement.
13.List the call numbers of all overdue books, together with the number of

days they are overdue.
14.What is the average salary of all employees?
15.Print a list of borrower id's and the number of books each has out  
 
Queries such as these are termed natural language queries. Of course,
most commercial DBMS's cannot accept queries like this, though natural
language query capability is an area of work in AI. Instead, most DBMS's
use a more formal query language. Even those with natural language
capabilities typically consist of a regular query language plus a natural
language front end - e.g.  
 

�  
 
PROJECT 

C. Actual queries against a database are expressed in a query language, which is
of one of two kinds:

"Front end"
Software 

DBMS
Software

Actual DBMS
Query Language
Equivalent

Natural
Language
Query

�13

1. A formal query languages - using mathematical notation - is used for
theoretical work. Typically, a query written in a formal query language is
not readily understandable to a typical user.

2. A commercial query language is a query language used by actual DBMS's.

3. Though commercial languages are what is used in actual DBMS
applications, formal languages are worthy of some study:

a. All commercial languages build on underlying formal language
concepts.

b. Formal languages provide a vehicle for research (especially the
proving of various theorems) that generates results useful in the
development of commercial languages.

D.Both formal and commercial query languages are of two general types:
procedural and non-procedural.

1. A procedural language requires the user to spell out the series of steps
needed to satisfy his query.

2. A non-procedural language allows the user to simply specify what he/she
wants, with the DBMS figuring out the steps needed to get it.  
 
Example (from a different realm): Suppose one wanted to find the roots
of the following equation:  

x2 + 3x + 2 = 0

a) In a non-procedural language, one would simply specify the equation
and indicate in some way that an appropriate value of x is wanted.
(“Find the value of x such that x2 + 3x + 2 = 0) 

�14

b) In a procedural language, one would specify steps like:  
 

Compute discriminant = 32 - 4 * 1 * 2  
 

Compute root1 = (-3 + sqrt(discriminant)) / 2  
 

Compute root2 = (-3 - sqrt(discriminant)) / 2  
 

Note that our sample English queries were all of a non-procedural sort.
A major part of the challenge in developing a natural language front-
end for a DBMS is the process of converting a non-procedural query
to a correct series of procedural steps if the actual DBMS query
language is procedural.

E. In our study of relational databases, we will look at four query languages
- one of each possible combination:  
 

 
PROJECT

1. We will look at relational algebra today, and SQL as the next major topic
in the course.

2. We will look much more briefly at relational calculus and QBE later in
the course.

Formal Commercial

Procedural Relational Algebra SQL

Non-procedural Relational Calculus QBE

�15

IV.Query Operations in the Relational Algebra

A.Queries in the relational algebra are formulated in terms of six basic
operations on relations. Three operate on a single relation to give a new
relation; and three operate on pairs of relations to give a new relation.  
.

B. The operation of SELECTION (denoted by the Greek letter sigma - σ)
selects rows of a table that meet certain criteria. The result is a new table
with (generally) fewer rows than the original table, but with the same
columns.  
 

Example: What is the relational algebra expression corresponding to our first
English query: "Who is the borrower whose id is 12345?"?  
 

ASK  
 

σ borrower  
 borrower_id = 12345  
 

What is the result of this query?  
 

ASK  
 

12345 aardvark anthony  
 

Note, then, that selection reduces the table by squeezing out rows that do not
satisfy the selection condition.

C. The operation of PROJECTION (denoted by the Greek letter pi - π) chooses
only specific columns from all the rows of a table  
 

Example: What is the relational algebra expression corresponding to our
second query: "List the names of all borrowers"?  
 

ASK  
 

π borrower  
 last_name 
 first_name 
 

What is the result of this query?  

�16

 

ASK  
 

aardvark anthony  
cat charlene  
dog donna 
fox frederick  
zebra zelda  
 

Example: our third query ("What is the title of the book whose call number
is QA76.093?") could be satisfied by a selection from book to get the row for
the book in question, followed by a projection on the book-title attribute.
(I.e. composing two relational algebra operations) - written as  
 

π σ book 
 title call_number = QA76.093  
 

What is the result of this query?  
 

ASK  
 

Wenham Zoo Guide 
 

Note, then, that projection reduces the table by squeezing out unwanted
columns.

1. One possible problem with a projection operation is that it could produce
a result with duplicate rows, by projecting out the attribute that
distinguishes them.  
 
Example: Project book on the author attribute. We now have two books
with the same author.  
 
This is a problem. Why? ASK  
 
A relation is a set, and a set cannot have the same element appear twice.
Thus definition of projection specifies that the result of a projection has
any such duplications eliminated. That is, the projection operation can
also result in squeezing rows out of the result.

�17

2. However, the SQL language (which is based on relational algebra) does
not do this automatically, because of the time involved - though there is a
SQL query language feature to specify that duplicates are to be
eliminated.

D.The operation JOIN is used when a query involves information contained in
more than one table.  
 

Example: Our next two queries would require a join.  
 
“List the titles of all books that are currently checked out” requires
information from the checked_out table (to find out the call number(s) of
book(s) currently checked out) and from the book table (to get the titles)  
 
“List the names of all borrowers having one or more books overdue”
requires information from the checked_out table (to find out the ids of
borrowers having books overdue) and from the borrower table (to get their
names)  

1. There are several variants of the join operation.

2. The cartesian join - denoted by X - generates all possible pairings of the
rows from the two tables.  
 

Example: we could use a cartesian join as part of the performing the for
the query "list the titles of all books that are currently checked out":  
 

checked_out X book

a. This produces large result  
 
 

borrower call date-due call title author  
id number number  
 
89754 RZ12.905 11-10-02 QA76.093 Wenham Zoo Guide
elephant  
89754 RZ12.905 11-10-02 RZ12.905 Fire Hydrants ... dog  
89754 RZ12.905 11-10-02 LM925.04 21 Ways to Cook .. dog  
89754 RZ12.905 11-10-02 AB123.40 Karate koala  

�18

89754 LM925.04 11-10-02 QA76.093 Wenham Zoo Guide
elephant  
89754 LM925.04 11-10-02 RZ12.905 Fire Hydrants ... dog  
89754 LM925.04 11-10-02 LM925.04 21 Ways to Cook .. dog  
89754 LM925.04 11-10-02 AB123.40 Karate koala  
20147 AB123.40 11-15-02 QA76.093 Wenham Zoo Guide
elephant  
20147 AB123.40 11-15-02 RZ12.905 Fire Hydrants ... dog  
20147 AB123.40 11-15-02 LM925.04 21 Ways to Cook .. dog  
20147 AB123.40 11-15-02 AB123.40 Karate koala  
 
PROJECT

i. Because the checked_out table contains 3 rows, and the book table
4 rows, the result of the join contains 3 x 4 = 12 rows.  

ii. Because the checked_out table has three columns and the book
table has three columns, the result of the join has 3 + 3 = 6
columns.  
 
This will always be true for a simple join: the result has as many
rows as the product of the numbers of rows of the two tables, and
as many columns as the sum of the numbers of columns of the two
tables. (For the former reason, simple join is sometimes called
product or times.)  
 
Question: For the second query - requiring a join of checked_out
and borrower) how many rows would the result table have? How
many columns? 
 

ASK  
 

3 x 5 = 15 rows  
3 + 3 = 6 columns

b. However, when we do a join, generally only certain rows are
meaningful.  
 

Example: in the above, the call number appears twice - once from each
table - but only the rows in which the two values of call number are

�19

the same tell us anything worth knowing - i.e. the fact that book
RZ12.905 is checked out means that the title of RZ12.905 is of
interest. On the other hand, the row that pairs RZ12.905 with
QA76.093 means nothing. Thus, a join must almost always be
immediately followed by a select.

c. In doing the select, of course, one must use attribute names from both
relations in the join. Since there is no rule that each relation must have
unique attribute names (and, in fact, there are good reasons for having
common names between relations), one must often qualify attribute
names by the name of the relation they come from.  
 

Example: Meaningful information would be produced by  
 

σ (checked_out X book)  
 checked_out.call_number =  
 book.call_number  
 

Yielding: 
 

borrower call date_due call title author  
id number number  
 
89754 RZ12.905 11-10-02 RZ12.905 Fire Hydrants ... dog  
89754 LM925.04 11-10-02 LM925.04 21 Ways to Cook .. dog  
20147 AB123.40 11-15-02 AB123.40 Karate koala  
 
If we now project this on title, we get the answer to our query about
title of books checked out:  
 
π σ (checked_out X book)  
 title checked_out.call_number =  
 book.call_number  
 
(Note that we do not need to qualify the title attribute, since it appears
in only one relation.)  
 
What is the result of this query?  
 

ASK  

�20

 

Fire Hydrants I Have Known  
21 Ways to Cook a Cat 
Karate

d. In similar fashion, our fifth query (“List the names of all borrowers
having one or more books overdue.”) can be answered by using a join
with a select and project as above, but with additional selection
conditions.  
 

ASK  
 

π σ (checked_out X borrower)  
 last_name, checked_out.borrower_id =  
 first_name borrower.borrower_id ^  

 date_due < today

3. Because joins are rarely useful without some sort of selection of the
relevant rows, a variant of the join known as the THETA JOIN (denoted
by the Greek letter theta - ϴ) is often used in practice. The theta join
combines selection with a join.  
 
For example, our last query (“List the names of all borrowers having one
or more books overdue.”) can be written as follows using a theta join.  
 
π (checked_out ϴ borrower)  
 last_name, checked_out.borrower_id =  
 first_name borrower.borrower_id ^  

 date_due < today

4. Frequently, our selection condition is that some column that appears in
both tables has the same value - as was true in the first example above
(and also was required for the second.). Such a join is called an equijoin,
and relational algebra defines s special variant of the join for it called the
NATURAL JOIN (denoted by the the join symbol with bars on each side
- ||X|).

�21

a. Example: the query "list the titles of all books that are currently
checked out" could be done using a natural join as follows:  
 

π (checked_out |X| book)  
 title  
 

This eliminates the need for selection, though projection is still needed
to eliminate columns other than the title.

b. However, the query “List the names of all borrowers having one or
more books overdue.”, still requires a theta join (or a selection
following the natural join) to select only the rows for overdue books.

c. The natural join is defined to require equality of values in the columns in the
two joined tables having the same name and the definition also specifies that
only one copy of the common column(s) is included in the result.

d. It could be realized by using a theta join combined with projection (or
cartesian join plus both selection and projection.) However, we
distinguish it for two reasons:

i. simplicity of notation.

ii. Efficiency: Some DBMS’s support a natural join operation in their
query language. (E.g. mySQL does, but IBM’s DB2 does not.) It
is more efficient for a DBMS to do the selection and projection as it
does the join, rather than doing a full cartesian product and then
paring it down!  

e. Note that natural join is defined in terms of attribute names. This
presupposes that when columns in two different tables have the same name,
they refer to the same thing. If the different names mean different things, the
result could be undesirable - e.g. suppose our employee table included a
“title” attribute which was the employee’s job title - then  
 

book |X| employee 

�22

 
would give a table listing employees whose job title is the same as the title of
some book!

5. Another variant of join is the OUTER JOIN, which is actually a variant of
the natural or theta join.

a. An ordinary natural join operation will omit from the result any row
from either table that does not join with some row from the other table.  
 

Example:  
 

List the titles of all books, together with the borrower id of the person
(if any) who has the book out.  
 

As a first attempt, we could use the following approach:  
 

π book |X| checked_out  
 title 
 borrower_id  
 

What is the result of this query?  
 

ASK  
 

Fire Hydrants I Have Known  
21 Ways to Cook a Cat 
Karate 
 
Note that there is no row in this table for Wenham Zoo Guide. Why?  
 

ASK  
 

Wenham Zoo Guide is not checked out, so there is no row in the
checked_out table for the row in book to join with.

b. If we want to be sure all books are included, even if not checked out,
we can use the outer join:  
 
π book � X| checked_out 

�23

 title 
 borrower_id  
 
which will pair any tuple in book that does not join with any row in
checked_out with a “manufactured” row of all nulls

c. The outer join comes in three versions

i. The left outer join - which we used above - joins any tuple in the
left relation that does not join with anything in the right relation
with a dummy tuple of all nulls. Any tuple in the right relation that
does not match a tuple in the left is absent from the result.

ii. The right outer join - denoted |X � - joins any tuple in the right
relation that does not join with anything in the left relation with a
dummy tuple of all nulls. Any tuple in the left relation that does
not match a tuple in the right is absent from the result.  

iii.The full outer join - denoted � X � combines the above - hence no
tuple is omitted.

d. The example we looked at considers the outer join in conjunction with
a natural join. It is also possible to do an outer join in conjunction
with a theta join.  
 
Example: Shortly, we will consider a query for “List the names of all
employees together with their supervisor’s name.” (This requires
another relational algebra operation we haven't considered yet.)  
 
If done with a theta join, this query would not produce a row for
aardvark as an employee, because aardvark’s supervisor is null.
(Presumably, he’s the head honcho.) If we used a theta outer join
instead, we would get aardvark listed with no supervisor:  
 

π (ρ employee � ϴ ρ employee)  

�24

 e.last_name e e.supervisor_ssn = s  
 e.first_name s.ssn 
 s.last_name 
 s.first_name

E. The operation RENAME takes a given table and gives it a new name,
possibly also renaming its attributes as well. Rename is denoted by the
Greek letter rho - ρ.

1. This operation is often used in doing a join between a table and itself.  
 
Example: Our query “List the names of all employees who earn more
than their supervisor” requires us to join the employee table with itself.
We can do this by  
 
π (employee ϴ ρ employee)  
employee. employee.supervisor_ssn = supervisor  
 last_name supervisor.ssn ^  
employee. employee.salary >  
 first_name supervisor.salary  
 
The rename operation here causes the second copy of employee to be
called supervisor for the purposes of qualifying names in the select and
project.  
 
What is the result of this query?  
 

ASK  
 

elephant emily  
fox frederick

2. Actually, as the example above suggests, when we need to qualify column
names, it is often convenient to rename the tables in a join to simplify the
names involved - e.g. the above could be simplified to:  
 

�25

π (ρ employee ϴ ρ employee)  
 e.last_name e e.supervisor_ssn = s  
 e.first_name s.ssn ^  

 e.salary > s.salary

3. The rename operation can also be used to rename the columns of a table -
we will see an example of this shortly

F. The operation UNION takes two relations on the same scheme and combines
them into one, eliminating duplicate tuples.  
 
Example: Our query “List the names of all people connected with the library
- whether borrowers, employees, or both.” requires combining information
from the borrower table and the employee table. A join is not what we want
- in no sense would pairing a borrower and an employee make sense - we
want to know the names of people who are either or both. What query
would do the job? 
 

ASK  
 

(π borrower) ∪ (π employee)  
 last_name, last_name,  
 first_name first_name 
 

What would be the result of this query?  
 

ASK  
aardvark anthony  
cat charlene  
dog donna 
fox frederick  
zebra zelda  
buffalo boris  
elephant emily  
 
(In some order - not necessarily this!)

�26

1. The symbol is the familiar set algebra symbol for union: ∪

2. Because relations are sets, duplicate rows that would result from a union
are discarded - e.g., in the above, suppose an someone were both a
borrower and an employee - then their name would appear only once,
even though it is in both tables. (Though for efficiency reason, many
relational DBMS’s allow you to avoid this operation and accept
duplicates, since discarding duplicates takes additional processing.)  
 

Example: in the above, there is only one row for aardvark and fox

3. Union only makes sense when the participating tables have the same or
similar schemes. In fact, they must have the same arity, and
corresponding attributes must be drawn from the same domain.  
 

In the above, we projected the last_name and first_name attributes before
taking the union, since salary and supervisor are unique to employees, and
borrower_id and ssn, while they play similar roles, are different.

4. Sometimes, we may have a case where tables being combined by union
have similar attributes with different names. In this case, we may need to
rename individual attributes.  
 
Example: Suppose we wanted our list to include an “id” attribute in both
cases - choosing either the borrower_id or the ssn as appropriate. This
could be done by:  
 
(ρ π borrower) ∪ (ρ π employee)  
 t1(id, borrower_id t2(id, ssn  
 last_name, last_name last_name last_name  
 irst_name) first_name first_name) first_name  
 
(Note that we use ρ to rename the “id” attributes to both be called id in
the result.)  
  
(Note that, in this case, a person who was both a borrower and an

�27

employee would definitely appear twice in the result - one with each id!)  

G.The operation of DIFFERENCE takes two relations on the same scheme and
returns a relation having only those tuples which appear in the first but the
not second.  
 
Example: Consider the query “List the names of all borrowers who are not
employees.” How would this be accomplished?  
 

ASK  
 

(π borrower) - (π employee)  
 last_name, last_name,  
 first_name first_name 
 
What would be the result of this query?  
 
ASK  
 

cat charlene  
dog donna 
zebra zelda  

1. The symbol is the familiar set algebra symbol for difference: -

2. As with union, the difference operation only makes sense if the tables
involved have the same arity, and corresponding attributes come from the
same domain.

H.There are two other relational operations that are, strictly speaking, not
necessary, since they can be expressed in terms of the six primitives
(selection, projection, join, rename, union, and difference). But they are
useful enough to include as operations in their own right anyway.

1. The operation of INTERSECTION is similar to union and difference, in
that it combines two relations having the scheme. But where union

�28

produces all tuples that occur in either table, and difference gives those
tuples in the first relation but not the second, intersection gives only
those tuples that occur in BOTH tables.  
 
Example: How would we answer the question “List all books needed as
course reserves that are currently checked out to someone”?  
 
ASK  
 

(π reserve_book) ∩ (π checked_out)  
 call_number call_number  

 
What would be the result of this query?  
 
ASK  

AB123.40 
 
(Joining could now be used to get additional information such as the Title
of the book and/or the borrower who has it.)

a. The symbol for intersection is the familiar set algebra symbol ∩

b. If intersection is not available in a particular commercial query
language, it can be implemented from the other primitives as follows:  
 
to form the intersection of relations R1 and R2, compute  
 
R1 - (R1 - R2)

i. R1 - R2 computes all tuples in R1 but not in R2

ii. therefore R1 - (R1 - R2) leaves only those tuples from R1 which
also occur in R2 - i.e. all tuples occurring in BOTH R1 and R2.

�29

c. As with union and difference, intersection only makes sense if both
tables have the same arity and corresponding attributes come from the
same domains. (Note how we used projection in the example to
facilitate this.)

2. The operation of DIVISION is a rather unusual and complex one, but
one that is useful in certain situations - namely queries in which a phrase
"for all" or "every" occurs.

a. To get a meaningful example, we will depart from our library database
to use student registration as an illustration.  
 
Suppose we have a relation  
 
courses_taken(student_id, course_id)  
 
which lists ALL the courses a student has successfully completed,  
 
and another relation  
 
core_requirements(course_id)  
 
which lists all the core courses required. (To simplify, we assume no
options in the core - i.e. no requirement of the form "take either xxxxx
or yyyyy").  
 
Now, suppose we wish to form a list of students eligible to graduate (at
least as far as the core is concerned.) These will be those students who
have taken EVERY course appearing in core_requirements. It turns
out that the division operation gives us what we want - i.e.  
 

courses_taken / core_requirements  
 

will give us a relation on the scheme (student_id) listing only those
students who have taken EVERY core_requirement.

�30

b. In general, the operation r / s is possible only if the scheme for s (S) is
a proper subset of the scheme for r (R). The scheme of the result is
those attributes of r not appearing in s: R-S. (E.g. (course_id) is a
subset of (student_id, course_id), and the result-scheme (student_id)
is (student_id, course_id) - (course_id).

c. The operation is called division because it is, in some sense, the
inverse of cartesian product. To see this, note that if we now take the
result of courses_taken / core_requirements and join it with
core_requirements, we will get back a relation on the original scheme
for courses_taken that is a subset of courses_taken -including only the
entries for students having fulfilled all the core. (The entries in the
original relation that are not in the product  
 

(courses_taken/core_requirements) |X| core_requirements  
 
may be thought of as the "remainder" of the division.)

d. If a DBMS does not provide division as a primitive, the operation can
be implemented from the other primitives as follows (assuming a
relation r on scheme R and a relation s on scheme S, with R … S  
 
r / s ::== (π r) - π (((π r) X s)- r)  

 R-S R-S R-S  
 
PROJECT

i. the first projection gives us a list of all tuples that could appear in
the quotient

ii. from this, we subtract the second projection, which gives us the
ineligible tuples.

iii.(π r) X s gives us the tuples that would appear in  
 R-S  

�31

 
r if every tuple in r were eligible to participate in the result - i.e. a
relation in which every value in π r is, in fact,  
paired with every value in s. R-S  

iv.Subtracting r from this gives us the tuples that are missing from r
for this to be true. Projecting this on R-S gives us the ineligible
tuples on R-S

I. There are some additional operations that extend the basic relational algebra,
which are sometimes called “extended relational algebra”.

1. One such extension is generalized projection - allow a projection
expression to contain computations based on column values, not just
column values themselves.  
 

Example:  
 

List the call numbers of all overdue books, together with the number of
days they are overdue.  
 

ASK  
 

π σ checked_out  
 call_number date_due < today  
 today - date_due  
 

What is the result of this query?  
 

ASK

2. A related extension is allowing the use of AGGREGATE FUNCTIONS to
produce a single summary value from a set of tuples.

a. The simplest case is applying functions like sum, max, min, average to
a single column, or count to an entire table.  
 

Example: What is the average salary of all employees?  
 

�32

G employee 
 average(salary)  

b. An aggregate function can also be used with a grouping operator to
produce summaries by groups  
 

Example: Print a list of borrower id's and the number of books each
has out 
 

 G checked_out  
borrower_id count(call_number)  
 

What is the result of the above query?  
 

ASK  
89754 2 
20147 1 

J. How do the various operations handle the special value NULL?  
 
 A key property of NULL is that it is never treated as any value during a
query - the principle being that, since NULL means we don't know a value, it
should never participate in any query. Thus, if we compare an attribute
whose value is NULL to some value, the result of the comparison is always
false, regardless of which comparison (=, <., >., <>, >= or <=) we use. In
fact, it is even the case that NULL = NULL is false, and so is NULL <>
NULL. Further, a NULL value never participates in any aggregate
operations such as average.

1. Example: suppose we are doing a natural join between two relations
which each contain a phone-number attribute. If a tuple in the first
relation contains a NULL phone-number, it will not join with any tuple
in the second relation - even one that also has a NULL phone-number.
(Since NULL = NULL is false!)

�33

2. Example: suppose we are calculating the average salary for all
employees in a company. If the salary for some employee is stored as
NULL, then - for the purposes of taking the average - it will be as if that
employee were not present. (Notice that this gives a different result than
if we took the salary to be 0.)

3. In designing a database, it will sometimes be necessary to specify that
certain fields CANNOT ever contain a NULL value. This will certainly
be true of any field that is part of the primary key, and may be true of
other fields as well. Most DBMS's allow the designer to specify that a
given field cannot be NULL  
.

V. Relational Algebra for Modifying the Database

A. The relational algebra, as we have developed it, only deals with queries, but
provides not way to alter the database. To add this capability, we need only
add the assignment operator ←.

B. Deletion: general form is  
 
relation ← relation - query expression for row(s)  
 
Example: Delete all books written by dog  
 
book ← book - σ book 

 author = dog

C. Insertion: general form is  
 
relation ← relation ∪ row(s) to be added  
 
Example: Add 65432 raccoon ralph to the database:  
 
borrower ← borrower ∪ {(65432, raccoon, ralph)}  
 

�34

Example: Suppose we merge with another library, which has a relation  
 
patron(patron_id, given_name, surname, middle_initial)  
 
We could add all of these patrons to our borrower table with a single
operation - note use of rename and project with reordering of columns to
make schemes conform:  
 
borrower ← borrower ∪ (ρ patron) 

 p(borrower_id,  
 last_name,  

 first_name)  

D. Update: general form is relation ← π relation
 formulas
 for changes

or

relation ← changed tuples ∪ (relation - tuples to be changed)

Example: Give all employees a 5% pay raise

employee ← π employee
 last_name
 first_name
 salary * 1.05
 supervisor_ssn

�35

